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A Fully 3D Atomistic Quantum Mechanical Study
on Random Dopant Induced Effects in 25nm
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Abstract— We present a fully 3D atomistic quantum me-
chanical simulation for nanometered MOSFET using a coupled
Schrödinger equation and Poisson equation approach. Empirical
pseudopotential is used to represent the single particle Hamil-
tonian and linear combination of bulk band (LCBB) method is
used to solve the million atom Schrödinger’s equation. We studied
gate threshold fluctuations and threshold lowering due to the
discrete dopant configurations. We compared our results with
semiclassical simulation results. We found quantum mechanical
effects increase the threshold fluctuation while decreases the
threshold lowering. The increase of threshold fluctuation is in
agreement with previous study based on approximated density
gradient approach to represent the quantum mechanical effect.
However, the decrease in threshold lowering is in contrast with
the previous density gradient calculations.

Index Terms— Dopant fluctuation, MOSFETs, 3D, threshold,
LCBB, quantum mechanical.

I. I NTRODUCTION

A CCORDING to the roadmap of the semiconductor Indus-
try Association [1], MOSFET (metal oxide semiconduc-

tor field transistor) channel length will scale down to sub-
25nm at the end of this decade. In such nanosized devices,
quantum mechanical effects play a big role in determining
the properties of the system. The new quantum mechanical
features, like the fact that the electron mean free path is
larger than the device dimensions and the single quantum
state levels, can be used to enhance device performance and
form new functionalities [2], [3], [4]. On the other hand,
as the size reduces, new obstacles emerge [3], [5], like the
short channel effects, source/drain off-state quantum tunneling
current, barrier current leakage and single dopant random
fluctuation [6]. The single dopant random fluctuation poses
a fundamental challenge to the device down scaling. How
to reduce this fluctuation is an intensely researched topic. In
this paper, we present an atomistic simulation to study this
fluctuation effect, especially to investigate whether quantum
mechanical effects enhance or reduce this random fluctuation,
and what is the cause of the fluctuation change.
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In recent years, various kind of simulation approaches have
been developed to simulate the MOSFET devices. Most notica-
bly, these include Drift-Diffusion Model and Density-Gradient
Model [7]. They are based on Bolzmann equation and local
semi-classical density of state calculations. The local density
of state calculation is not valid in true quantum mechanical
regime. A much better approach is to solve the electron
eigenstates and occupied carrier densities based on the carrier’s
Schrödinger’s equation, and solve the potential selfconsistently
with the carrier charge density via a Poisson equation. This
Schrödinger-Poisson equation approach has been used to study
MOSFET devices for continuous doping model, and the ran-
dom dopant fluctuation in approximated model [8]. However,
only simple effective mass Schrödinger’s equation was used,
which might not be very accurate when the variation of the
potential is sharp, as in the perpendicular direction of the gate.
Recently, we have developed an Schrödinger-Poisson equation
approach based on empirical pseudopotential method (EPM)
for the electron Schrödinger’s equation [9]. The atomistic EPM
description is much more accurate than the effective mass
description for the electronic structure, and its atomistic feature
makes it natural to study the dopant fluctuation effects. This
approach use the linear combination of bulk band (LCBB)
method [10], [11] to calculate the electron structure, which
enables it to solve million atom systems, hence to simulate
3D MOSFET model. Here, we will use this approach to study
the dopant fluctuation effects in a nanometered MOSFET.

The single dopant random fluctuation effect was first re-
congized by Mead and Hoeneisen in the 1970s [12]. It has
been intensely studied in the last 10 years. As the device
dimension scales down to nanosize, the number and position
of the dopant atoms in the sensitive channel region will
vary among devices. As a result, the macroscopically same
devices become microscopically different, and demonstrate
different device characteristics, like in the I/V curves and
gate threshold voltages. This is a major challenge for device
industry. It is possible that this alone will stop the device down
scaling before the other technical difficulties take into effects.
These random dopant fluctuation effects have been studied
theoretically by different simulation approaches, the most
well known one of which is the Density-Gradient simulation
presented by Asenov’s group [13]. This generalized Density
Gradient method introduces an gradient dependent free energy
potential term in the current diffusion equation to represent
the quantum mechanical effects [14], [15]. Its validity has
been checked by comparing its results with effective mass
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Fig. 1. (Color online) Geometry of the MOSFET structure along with
electrostatic potential contour lines withVds = 0.0V and Vg = 2.0V in
one of the random doping cases. The average doping density in substrate (p
type) is 1019cm−3. Schrödinger equation and Poisson equation are solved
self-consistently in the dashed line box.

Schrödinger-Poisson equation results for simple systems like
2D device models. It is found that [13] one has to use a fitting
parameter as the electron effective mass in order to reproduce
the Schrödinger-Poisson equation results. This exemplifies the
short comings of such approximated approaches. It is not
clear how such equations with fitted parameters from simple
systems (e.g, continuous doping models and 2D systems) will
play out in actual 3D simulations. It is thus desirable to do a
direct Schrödinger-Poisson equation simulation for the same
physical problem. Further more, in our case the Schrödinger’s
equation is based on EPM, thus much more accurate than the
simple effective mass model

II. SIMULATION APPROACH

The MOSFETs we simulated are of n-carrier reverse type
and have 25 nm channel length with oxide thicknesstox =
1.5nm. In such a device, the nominal doping is p-type, with
the average acceptor concentration in the channel region as
NA = 1.0 × 1019cm−3. Fig.1 shows the geometry of the
MOSFETs we simulated. Schrödinger equation and Poisson
equation were solved in the region included in the dashed
line box. We take 27 nm in the z direction for the simulated
box. Thus, there are 0.85 million atoms in the simulated
system. Fig.1 also shows the electrostatic potential distribution
at gate voltageVg = 2.0V with no bias voltage. In our
fully 3D atomistic quantum mechanical model, we solved
self-consistently the 3D Poisson equation (1) for electrostatic
potentialφ(r) and exact 3D Schrödinger equation (2):

∇[ε(r)∇φ(r)] = −4π[p(r)− n(r) + N+
d (r)− N−a (r)] (1)

(−1
2
∇2 + V(r) + Vstr(r) + Vext(r))ψi(r) = Eiψi(r) (2)

Here n(r) is the occupied electron carrier density to be
determined by the electron wavefunction,p(r) is a small hole
density calculated by local equation of state,N+

d (r) is the
donate nuclear charge density, andN−

a (r) is the acceptor
nuclear charge density. In our simulation, we have setN+

d (r)
to be zero, i.e., no donor. In our previous simulation,N−

a (r)

is treated as an continuous function, thus, there were no
individual dopant atoms. In the present work, we have chosen
the individual acceptor position{Rj} randomly according
to the average doping concentration. In average, there are
169 dopant atoms in the simulated region. No dopant-dopant
position correlation is assumed. Then the acceptor nuclear
charge at a given temperature T is:

N−
a (r) =

∑

j

(
2π

a
)3e−(r−Rj)

2/a2 1
e(Eb−φ(r)−Ef )/kT + 1

(3)

here Eb is the donor binding energy position, andEf is
the Fermi energy. We have used an finitea = 0.3nm to
represent the effective donor nuclear charge and to make
the numerical solution stable. But our results do not de-
pend sensitively on the value ofa. The Boltzman factor

1

e−(Eb−φ(r)−Ef )/kT +1
represents the occupation probability of

an acceptor. Near the channel, for the gate voltage we are
considering, almost all the acceptor are occupied, thus the
Boltzman factor 1

e(Eb−φ(r)−Ef )/kT +1
is almost one, and sim-

ilarly the hole densityp(r) is negligible.V(r) in Eq.(2) is a
direct sum of the EPM pseudopotential of each atom.Vstr(r)
is a confinement potential representing the goemetry and
the SiO2 layer of the device. The additional self-consistent
electrostatic potentialVext(r) = φ is solved from Poisson
Equation (1). We have used LCBB[10,11] method to calculate
the eigenstates{ψi(r), Ei}. The LCBB method expands the
device wavefunctionψi(r) with the bulk Bloch state wave-
functions. We have used 2 conduction band states at each
k-points, and k-points around the 6 X-point valleys as our
expansion basis to representψi(r). In a typical calculation,
this amounts to 8810 basis functions. To calculate the potential
φ(r) selfconsistently, we have calculated the carrier charge
densityn(r) from carrier wavefunctionsψi(r) as:

n(r) =
∑

i

2|ψi(r)|2 1
e(Ei−Ef )/kT + 1

. (4)

In the current study, to simplify the situation, we have
used a zero bias between the source and drain. As a result,
there is only a single Fermi energyEf , determined from the
source/drain potential. Eqs (1)-(4) were solved self consis-
tently until convergence is achieved using a Pulay DIIS po-
tential mixing iteration scheme [16] to update the potential in
Eq(2). Dirichlet and Neumann boundary conditions were used
to solve the Poisson eq(1). Further details of our calculation
procedure can be found in [9].

III. R ESULTS AND DISCUSSION

A comparison of the total mobile charge density versus gate
voltage for different doping schemes and different simulation
approaches is shown in Fig.2. The total mobile charge density
Q is just an integral ofn(r). To compare with the uniform
continuous doping model, we have chosen a random doping
configuration for our ”atomistic” doping case. The same con-
figuration is used for our quantum mechanical calculation and
a semi-classical calculation. In the semi-classical calculation,
the coupled drift diffusion and Poisson equations are solved
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Fig. 2. Comparison of mobile charge density between quantum mechanical
calculation and semi-classical calculation. The ’atomistic’ curves refer to the
same discrete doping case.

selfconsistent without using the gradient correction for the
quantum mechanical effects. This is equivalent to calculate
the carrier charge densityn(r) at a given pointr based on
the local potentialφ(r) and the Fermi energyEf using the
Fermi-Dirac distribution.

By comparing the continuous doping result with the atom-
istic doping result, we see that the gate voltage threshold has
been decreased by about 0.15 V due to the atomistic nature of
the doping. This is roughly true for both quantum mechanical
simulation and the classical simulation, although this lowering
is slightly larger in the quantum mechanical simulation, for this
particular dopant configuration. Comparing with the classical
simulation result, the quantum mechanical threshold voltage
is about 0.4 V higher, as found in our previous calculations
[9]. The lowering of the gate voltage in the atomistic doping
case is due to some local potential minimum (valley) which
holds carrier charge density before the average potential reach
the carrier inversion threshold. Such local carrier density can
form percolation to conduct current [13]. To illustrate the
carrier density in real space, we have shown in Fig.3 the
cross section perpendicular to the gate substrate and along the
channel direction. One can see that, in the atomistic doping
case, there is a lump of charge in the middle of the channel due
to a local potential minimum at that spot. Such local charge
reduces the threshold of the carrier inversion. In Fig.3, we also
show the selfconsistent potential for the continuous doping
case and the atomistic doping case. We see that, corresponding
to the charge density lump, there is a potential minimum at
that place.

The biggest difference between the quantum mechanical
simulaiton and the semi-classical simulation is the average
distance of the occupied electron charge density to the Si-
SiO2 interface. This is due to the quantum confinement effects
as discussed in [9]. One can calculate the center of mass
of n(r) (charge centroid) and plot its position versus the
applied gate voltage. The results are shown in Fig.4 for our

Fig. 3. Mobile Charge Density and Selfconsistently Solved Electrostatic
Potential Comparisons on Y Section. Subfigure (a) is for the quantum
simulation of continuous doping case, subfigure (b) is for quantum simulation
of discrete doping case, and subfigure (c) is for classical simulation of discrete
doping case. These figures refer to the middle cross section perpendicular to
Si− SiO2 surface and parallel to the source-drain direction.



4

Fig. 4. Comparisons of the inversion layer centroid versus gate voltage, from
quantum mechanical simulations.

quantum mechanical simulation. As expected, as the applied
gate voltage increase, the charge centroid is more close to
the Si-SiO2 interface. At the end, it saturated at about 1nm
away from the Si-SiO2 interface. What interesting is that the
atomistic doping case has a closer charge centroid to the Si-
SiO2 interface than the continuous uniform doping case. This
is again probably because there could be some local potential
minimum close to the Si-SiO2 which host some occupied
electron charge.

In the above, we only presented one atomistic doping
configuration. To get an statistical averaging, we have carried
out both quantum mechanical and semi-classical simulations
for nineteen different individual configurations. The average
threshold lowering (∆Vth(V )) is shown in Table I. Here we
see that the average lowering is smaller than that shown in
Fig.2. This is because that, in Fig.2, we chose one of the
nineteen configurations which has the most severe threshold
lowering to highlight discrete dopant induced effect. Although
the threshold lowerings of quantum and classical simulations
seem to be comparable, the averaged threshold lowerings
shown in TABLE.I. are different for these two simulations.
We see that, the lowering due to random dopant distribution
in quantum mechanical simulation is smaller than in semi-
classical simulation. This is probably because in quantum
mechanical simulation, due to quantum confinement effect, the
electron cannot occupy some narrow potential local minimum,
while they can do that in semi-classical simulation. Thus, in
the semi-classical simulation, the electron can take the full
advantage of the local potential minimum effects, while such
effects have been smeared out in some degree in quantum
simulation by quantum confinement effect. This explains why
semi-classical simulation has a larger threshold reduction.

With the nineteen different simulations, we can calculate
the threshold fluctuation as σVth = [

∑
j=1,N (Vth,j −

Vth,ave)2/(N − 1)]1/2. The results are also listed in Table
I. According to the above argument of quantum confinement

effect smearing out the potential local minimum effects, one
might think the fluctuation in the quantum mechanical case
should be smaller than the classical case.That is just opposite
of what is shown in Table I, where the 0.04552 V quantum
mechanical fluctuation is 15.2% larger than the 0.03952
V semi-classical fluctuation.This increase of the threshold
fluctuation due to quantum mechanical effects has also been
found in density gradient method [13]. This seemly puzzling
phenomina can be explained by the following due to another
quantum mechanical effect. In the quantum simulation, the
average charge density is away from the Si-SiO2 interface as
shown in Fig.3 and Fig.4. This is equivalent to having a larger
SiO2 layer in the semi-classical simulation. The threshold
fluctuation however has an direct relationship to the SiO2

thickness. For small SiO2 thickness, the potential near the Si-
SiO2 interface (where the carrier charge is) is pinned by the
gate potential. Thus, the randomness of the acceptor positions
plays a small role in determining the potential at the inteface
(hence the random fluctuation of the threshold is small). Thus,
for quantum simulation, where the effective charge distance to
the gate substrat is large, the fluctuation is also large. To test
this hypothesis more quantitatively, we have taken the electron
charge centroidzi (measure from the Si-SiO2 interface) near
the threshold gate voltage ofVg = 2V , and convert that into
effective extra SiO2 thickness as4 = εoxzi/εSi [14]. We
have done three different semi-classical simulations using this
4 to test different effects of this phenomina.

First, we have used an average4 = 0.6nm from the
quantum mechancialzi for all the configuration cases, then
we repeat the semi-classical calculations for all the previous
individual configurations, and recalculate the average threshold
∆Vth and threshold fluctuationσVth. The results are listed
in the fourth row of Table.I. We can see that the threshold
lowering with this simulation (from the classical continuous
model with tOX = 2.1nm) is much larger than the quantum
mechanical simulaiton result. This indicate that this effective
increase oftOX cannot be used to explain the small∆Vth of
quantum mechanical calculation compared to semi-classical
calculation. On the other hand, the threshold fluctuationσVth

of this classical simulation agree perfectly with the quantum
mechanical result.

In above, we have used an average4. However, there is also
an fluctuation of4 among different dopant configurations, in
the range of 0.5258 nm to 0.6363 nm. To investigate the effect
of this fluctuation, we have done semi-classical simulation for
each configuration with its own4 from the corresponding
quantum mechanical simulation. The results are shown in row
5 of Table I. As one can see, the results are essentially the same
as in row 4 where this4 fluctuation is ignored. To further
confirm that the effect of4 fluctuation is small, we have done
semi-classical simulations with uniform continuous doping
profile while using the different4 for different individual
doping configurations from the quantum mechanical simula-
tion. The results are shown in row 6 of Table I. This time,
the threshold fluctuation is extremely small, indicating that
the effective thickness fluctuation doesn’t play a role. Instead,
the increase fluctuation of the quantum mechanical simulation
is purely due to the increased average distance of the carrier
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TABLE I

GATE THRESHOLD LOWERING∆Vth(∆Vth = V uniformdoping
th

− V discretedoping
th

) AND GATE THRESHOLD FLUCTUATIONσVth FROM DIFFERENT

SIMULATION METHODS. FOR ROW5, THE ∆Vth IS MEASURED FROM CLASSICAL SIMULATION OF UNIFORM CONTINUOUS DOPING WITH

CORRESPONDING FLUCTUATEDtOX .

model quantum ’atomistic’ classical ’atomistic’ classical ’atomistic’ classical ’atomistic’ classical ’continuous’
tox(nm) 1.5 1.5 2.1 1.5+∆fluctuated 1.5+∆fluctuated

∆Vth(V ) 01 0.05566 0.065 0.09984 0.10213 —
∆Vth(V ) 02 -0.00172 0.05125 0.06333 0.06744 —
∆Vth(V ) 03 0.08472 0.07096 0.06239 0.06216 —
∆Vth(V ) 04 0.09277 0.07071 0.07771 0.07959 —
∆Vth(V ) 05 0.07144 0.13389 0.19347 0.19265 —
∆Vth(V ) 06 0.06005 0.08073 0.0773 0.0745 —
∆Vth(V ) 07 0.05666 0.09808 0.12219 0.12427 —
∆Vth(V ) 08 0.06473 0.07354 0.08262 0.07988 —
∆Vth(V ) 09 0.06036 0.07597 0.12034 0.12005 —
∆Vth(V ) 10 0.08653 0.12169 0.16308 0.16313 —
∆Vth(V ) 11 0.03646 0.04056 0.10271 0.10466 —
∆Vth(V ) 12 -0.00905 0.05906 0.06227 0.06465 —
∆Vth(V ) 13 -0.01508 -0.00425 0.01042 0.00472 —
∆Vth(V ) 14 0.18534 0.16087 0.17156 0.17191 —
∆Vth(V ) 15 -0.00203 0.0599 0.05617 0.05798 —
∆Vth(V ) 16 0.06877 0.14914 0.16084 0.16207 —
∆Vth(V ) 17 0.03134 0.05942 0.05289 0.05201 —
∆Vth(V ) 18 0.05601 0.09512 0.09225 0.0938 —
∆Vth(V ) 19 0.05707 0.10239 0.11767 0.11878 —

average∆Vth(V ) 0.05474 0.08232 0.09942 0.09981 —
σVth(V ) 0.04552 0.03952 0.04742 0.04794 0.00239

Fig. 5. Density of states comparison between continuous doping and discrete
doping. Both cases are at gate voltageVg = 2.0V with no bias. The averaged
density of states is also shown here. The downward arrow shows the Fermi
energy.

charge to the Si-SiO2 interface. In summary, comparing to
semi-classical simulation, the decrease in quantum mechanical
simulation for average threshold lowering∆Vth from the
uniform continuous doping case is due to quantum smearing
of the local potential minimum effects, while the increase of
the threshold fluctuation is due to the increased distance of the
carrier charge density to the Si-SiO2 interface.

Our fully 3D quantum mechanical model enables us to study
the details of quantum mechanical effects, such as the electron
density of states. Fig.5 compares the density of states between
continuous doping case and the one discrete doping case of

Fig.2, Fig.3, and Fig.4. Fig.5 also shows the average density
of states of the nineteen different configurations. Two major
features can be seen from Fig.5. First, the discrete doping case
possesses a smoother density of states. Second, the discrete
dopant shift the tail of the density of states lower toward the
Fermi energyEF . In the continuous doping case, the potential
is symmetric and uniform in the z direction of Fig.1. Due
to these symmetry, there are degeneracy of the eigenstates,
and the density of state shows big peak structures. A random
dopant configuration and its corresponding random potential
destroy these symmetries, thus result in an overall smoother
DOS. The down shifting of the DOS in the discrete dopant case
is due to local potential minimum. This DOS down shifting
corroborates well with the lowering of the gate threshold
voltage.

IV. CONCLUSION

In this paper, we have presented fully 3D quantum mechan-
ical atomistic simulations to study the random dopant induced
effects such as threshold fluctuation and lowering. We solved
single particle wavefunctions{ψi(r), Ei} from the empirical
pseudopotential Schrödinger equation using LCBB method
and calculated the occupied carrier charge density from these
wavefunctions. This is then coupled with the Poisson equation
to form a self-consistent simulation. Our results show a
15.2% larger threshold fluctuation of the quantum mechanical
simulation than that of semi-classical method, while a smaller
threshold lower than the semi-classical result. We found that
the smaller threshold lower is due to effective smearing of the
potential local minimum due to quantum confinement effect,
while the increase threshold fluctuation is due to increase
distance of the carrier charge density to the Si-SiO2 interface
(as a result, the potential in the large carrier charge density



6

area cannot be pinned down by the gate potential). Thus,
unfortunately, quantum mechanical effect does not reduce
the gate threshold random fluctuation, instead it exacerbates
the problem. This finding for the threshold fluctuation is
qualitatively similar to the previous study using approximated
density gradient method to include the quantum mechanical
effects [13]. However, our finding for threshold lowering (from
the continuous doping case) is opposite from the density
gradient method. In the density gradient method, the quantum
mechanical lowering is larger than the semiclassical lower
[13], while in our simulation, the quantum mechanical lower-
ing is smaller than the semiclassical results. This highlight the
needs for accurate and direct quantum mechanical simulations.
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